Язык UML. Руководство пользователя

       

Реактивные объекты


Чаще всего диаграммы состояний используются для моделирования реактивных объектов, особенно экземпляров классов, прецедентов и системы в целом.

В то время как взаимодействия (см. главу 15) применяются для моделирования поведения сообщества объектов, совместно решающих некоторую задачу, диаграммы состояний предназначены для моделирования поведения одного объекта на протяжении его жизненного цикла. Если диаграммы деятельности (см. главу 19) моделируют поток управления от деятельности к деятельности, то диаграммы состояний - поток управления от события к событию.

При моделировании поведения реактивного объекта нужно специфицировать главным образом три вещи: устойчивые состояния, в которых может находиться объект, события, которые иницируют переходы из одного состояния в другое, и действия, выполняемые при каждой смене состояния. Моделирование реактивного объекта подразумевает моделирование всего его жизненного цикла (см. главу 21), начиная с момента создания и вплоть до уничтожения, с особым акцентом на устойчивые состояния, в которых может находиться объект.

Устойчивое состояние - такое, в котором объект может находиться неопределенно долгое время (см. главу 23). Когда происходит некое событие, объект переходит в новое состояние. События могут также инициировать переходы в себя и внутренние переходы, когда исходное и целевое состояния совпадают. В ходе реакции на событие или изменения состояния объект может выполнить некоторое действие.

Примечание: При моделировании поведения реактивного объекта вы можете специфицировать действие, привязав его к переходу или изменению состояния. В специальной литературе автомат, все действия которого привязаны к переходам, называется машиной Мили (Mealy), а автомат, все действия которого привязаны к состояниям, машиной Мура (Moore). C математической точки зрения тот и другой обладают одинаковой выразительной мощью. На практике при разработке диаграмм состояний обычно используется комбинация машин Мили и Мура.

Моделирование реактивного объекта складывается из следующих процессов:


  • Выберите контекст для автомата - класс, прецедент или систему в целом.
  • Выберите начальное и конечное состояния для объекта. Для использования в остальной части модели, возможно, стоит сформулировать пред- и пост условия (см. главу 10) для начального и конечного состояния.
  • Определите устойчивые состояния объекта, - те, в которых он может находиться неопределенно долгое время. Начните с состояний верхнего уровня, а затем переходите к подсостояниям.
  • Определите разумное частичное упорядочение устойчивых состояний на протяжении жизненного цикла объекта.
  • Определите, какие события могут инициировать переходы между состояниями. Смоделируйте эти события как триггеры переходов из одного допустимого упорядочения состояний в другое.
  • Присоедините действия к переходам (как в машине Мили) и/или к состояниям (как в машине Мура).
  • Рассмотрите, как можно упростить автомат за счет использования подсостояний, ветвлений, разделений, слияний и исторических состояний.
  • Проверьте, что любое из состояний достижимо при некоторой комбинации событий.
  • Убедитесь в отсутствии тупиковых состояний, то есть таких, из которых нет переходов ни при какой комбинации событий.
  • Трассируйте автомат вручную или с помощью инструментальных средств и проверьте, как он ведет себя при ожидаемых последовательностях событий и реакций на них.

    На рис. 24.2 показана диаграмма состояний для разбора простого контекстно-свободного языка. Примеры таких язков можно найти в системах, для которых входной или выходной поток составляют XML-сообщения. В таких случаях проектируется автомат для разбора потока символов, удовлетворяющего синтаксису языка:


    Рис. 24.2 Моделирование реактивных объектов

    сообщение: ' &lt' строка ' &gt' строка ' ; '

    Первая строка представляет тэг, вторая - тело сообщения. Из данного потока символов извлекаются только сообщения, удовлетворяющие правилам синтаксиса.

    Из рисунка видно, что для автомата предусмотрены только три устойчивых состояния: Ожидание, ПолучениеЛексемы и ПолучениеТела. Диаграмма состояний спроектирована в виде машины Мили - действия привязаны к переходам.На самом деле в автомате есть только одно представляющее интерес событие (см. главу 20) - вызов put с фактическим параметром с (символом). В состоянии Ожидание автомат отбрасывает все символы, не интерпретируемые как начало лексемы (это специфицировано сторожевым условием). При обнаружении начала лексемы состояние объекта изменяется на ПолучениеЛексемы. Находясь в этом состоянии, автомат сохраняет все символы, не интерпретируемые как конец лексемы (это тоже специфицировано сторожевым условием). Обнаружив конец лексемы, объект переходит в состояние ПолучениеТела. В этом состоянии автомат сохраняет все символы, не интерпретируемые как конец сообщения (см. сторожевое условие). Как только получен конец сообщения, состояние объекта меняется на Ожидание; возвращается значение, показывающее, что сообщение разобрано и автомат готов к приему следующего.

    Обратите внимание, что эта диаграмма описывает автомат, работающий непрерывно - в нем нет конечного состояния.


    Содержание раздела